Identifying environmental controls on vegetation greenness phenology through model–data integration
نویسندگان
چکیده
Existing dynamic global vegetation models (DGVMs) have a limited ability in reproducing phenology and decadal dynamics of vegetation greenness as observed by satellites. These limitations in reproducing observations reflect a poor understanding and description of the environmental controls on phenology, which strongly influence the ability to simulate longer-term vegetation dynamics, e.g. carbon allocation. Combining DGVMs with observational data sets can potentially help to revise current modelling approaches and thus enhance the understanding of processes that control seasonal to long-term vegetation greenness dynamics. Here we implemented a new phenology model within the LPJmL (Lund Potsdam Jena managed lands) DGVM and integrated several observational data sets to improve the ability of the model in reproducing satellitederived time series of vegetation greenness. Specifically, we optimized LPJmL parameters against observational time series of the fraction of absorbed photosynthetic active radiation (FAPAR), albedo and gross primary production to identify the main environmental controls for seasonal vegetation greenness dynamics. We demonstrated that LPJmL with new phenology and optimized parameters better reproduces seasonality, inter-annual variability and trends of vegetation greenness. Our results indicate that soil water availability is an important control on vegetation phenology not only in water-limited biomes but also in boreal forests and the Arctic tundra. Whereas water availability controls phenology in water-limited ecosystems during the entire growing season, water availability co-modulates jointly with temperature the beginning of the growing season in boreal and Arctic regions. Additionally, water availability contributes to better explain decadal greening trends in the Sahel and browning trends in boreal forests. These results emphasize the importance of considering water availability in a new generation of phenology modules in DGVMs in order to correctly reproduce observed seasonal-to-decadal dynamics of vegetation greenness.
منابع مشابه
Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery
Vegetation phenology controls the seasonality of many ecosystem processes, as well as numerous biosphere-atmosphere feedbacks. Phenology is also highly sensitive to climate change and variability. Here we present a series of datasets, together consisting of almost 750 years of observations, characterizing vegetation phenology in diverse ecosystems across North America. Our data are derived from...
متن کاملAn NDVI-Based Vegetation Phenology Is Improved to be More Consistent with Photosynthesis Dynamics through Applying a Light Use Efficiency Model over Boreal High-Latitude Forests
Remote sensing of high-latitude forests phenology is essential for understanding the global carbon cycle and the response of vegetation to climate change. The normalized difference vegetation index (NDVI) has long been used to study boreal evergreen needleleaf forests (ENF) and deciduous broadleaf forests. However, the NDVI-based growing season is generally reported to be longer than that based...
متن کاملExamining Land Cover and Greenness Dynamics in Hangzhou Bay in 1985-2016 Using Landsat Time-Series Data
Land cover changes significantly influence vegetation greenness in different regions. Dense Landsat time series stacks provide unique opportunity to analyze land cover change and vegetation greenness trends at finer spatial scale. In the past three decades, large reclamation activities have greatly changed land cover and vegetation growth of coastal areas. However, rarely has research investiga...
متن کاملA continental phenology model for monitoring vegetation responses to interannual climatic variability
Regional phenology is important in ecosystem simulation models and coupled biosphere/atmosphere models. In the continental United States, the timing of the onset of greenness in the spring (leaf expansion, grass green-up) and offset of greenness in the fall (leaf abscission, cessation of height growth, grass brown-oft) are strongly influenced by meteorological and climatological conditions. We ...
متن کاملA regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: an application of MODIS leaf area index
A regional phenology model for detecting onset of vegetation greenness was developed using year 2001MODIS land products in temperate mixed forests in Korea. The model incorporates a digital elevation model (DEM), moderate resolution imaging spectroradiometer (MODIS) landcover and leaf area index (LAI) products, and climate data from weather-monitoring stations. MODIS-based onset of greenness va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014